Using the frame averaging of aS500 EPID for IMRT verification
نویسندگان
چکیده
In this study, we evaluated the use of aS500 EPID for the verification of IMRT beam delivery, using the synchronous, frame-averaging acquisition. In this approach, an EPID continuously integrates frames while irradiated by an IMRT field; the averaged image is then converted to a dose profile using a linear calibration curve, and is compared with the planned profiles using a linear-regression model, which returns an index sigma (root mean squared error) for the goodness of fit. We identified several potential errors in this acquisition mode: missing data between the start of irradiation and imaging, and from the last (incomplete) frame, which we proved are insignificant for IMRT fields; and EPID dead time during irradiation stemming from data transfer, which we successfully corrected for clinical MU (>100). We compared the measured relative profiles and central axis dose of 25 prostate fields with the planned ones. Applying our correction methods, very good agreement was obtained between the measured and planned profiles with a mean sigma of 1.9% and a standard deviation of 0.5%; for central-axis dose the agreement was better than 2.0%. We conclude that the aS500 is an effective tool for verification of IM beam delivery in the range of clinical MU (>100) settings. Although the vender is developing an upgrade to fix similar problems, our results demonstrate that the current configuration with simple correction schemes can achieve satisfactory results.
منابع مشابه
Dosimetric properties of an amorphous silicon electronic portal imaging device for verification of dynamic intensity modulated radiation therapy.
Dosimetric properties of an amorphous silicon electronic portal imaging device (EPID) for verification of dynamic intensity modulated radiation therapy (IMRT) delivery were investigated. The EPID was utilized with continuous frame-averaging during the beam delivery. Properties studied included effect of buildup, dose linearity, field size response, sampling of rapid multileaf collimator (MLC) l...
متن کاملAssessment of a 2D EPID-based Dosimetry Algorithm for Pre-treatment and In-vivo Midplane Dose Verification
Introduction: The use of electronic portal imaging devices (EPIDs) is a method for the dosimetric verification of radiotherapy plans both pretreatment and in-vivo. The aim of this study was to test a 2D EPID-based dosimetry algorithm for dose verification of some plans inside a homogenous and anthropomorphic phantom and in-vivo, as well. Materials and Methods: </strong...
متن کاملAn empirical model of electronic portal imager response implemented within a commercial treatment planning system for verification of intensity‐modulated radiation therapy fields
Quality assurance (QA) of an intensity-modulated radiation therapy (IMRT) plan is more complex than that of a conventional plan. To improve the efficiency of QA, electronic portal imaging devices (EPIDs) can be used. The major objective of the present work was to use a commercial treatment planning system to model EPID response for the purpose of pre-treatment IMRT dose verification. Images wer...
متن کاملA Generalized Strategy for 3D Dose Verification of IMRT/VMAT Using EPID-measured Transit Images
The aim in this study is to develop a generalized strategy for 3D dose verification of IMRT and VMAT planes using EPID transit images in combination with Monte Carlo (MC) simulations. An EPID-based dosimetric verification procedure was developed to convert EPID-measured transit images into 2D exit photon fluence by de-convoluting with the MC-simulated EPID response kernels. The present scatter ...
متن کاملDosimetric IMRT verification with a flat-panel EPID.
A convolution-based calibration procedure has been developed to use an amorphous silicon flat-panel electronic portal imaging device (EPID) for accurate dosimetric verification of intensity-modulated radiotherapy (IMRT) treatments. Raw EPID images were deconvolved to accurate, high-resolution 2-D distributions of primary fluence using a scatter kernel composed of two elements: a Monte Carlo gen...
متن کامل